Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 67(8): 6410-6424, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38592014

RESUMEN

We report two novel prodrug Pt(IV) complexes with bis-organosilane ligands in axial positions: cis-dichloro(diamine)-trans-[3-(triethoxysilyl)propylcarbamate]platinum(IV) (Pt(IV)-biSi-1) and cis-dichloro(diisopropylamine)-trans-[3-(triethoxysilyl) propyl carbamate]platinum(IV) (Pt(IV)-biSi-2). Pt(IV)-biSi-2 demonstrated enhanced in vitro cytotoxicity against colon cancer cells (HCT 116 and HT-29) compared with cisplatin and Pt(IV)-biSi-1. Notably, Pt(IV)-biSi-2 exhibited higher cytotoxicity toward cancer cells and lower toxicity on nontumorigenic intestinal cells (HIEC6). In preclinical mouse models of colorectal cancer, Pt(IV)-biSi-2 outperformed cisplatin in reducing tumor growth at lower concentrations, with reduced side effects. Mechanistically, Pt(IV)-biSi-2 induced permanent DNA damage independent of p53 levels. DNA damage such as double-strand breaks marked by histone gH2Ax was permanent after treatment with Pt(IV)-biSi-2, in contrast to cisplatin's transient effects. Pt(IV)-biSi-2's faster reduction to Pt(II) species upon exposure to biological reductants supports its superior biological response. These findings unveil a novel strategy for designing Pt(IV) anticancer prodrugs with enhanced activity and specificity, offering therapeutic opportunities beyond conventional Pt drugs.


Asunto(s)
Antineoplásicos , Compuestos Organoplatinos , Profármacos , Profármacos/farmacología , Profármacos/química , Profármacos/síntesis química , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Animales , Compuestos Organoplatinos/farmacología , Compuestos Organoplatinos/química , Compuestos Organoplatinos/síntesis química , Ligandos , Ratones , Línea Celular Tumoral , Silanos/química , Silanos/farmacología , Relación Estructura-Actividad , Ensayos de Selección de Medicamentos Antitumorales , Células HT29
2.
Elife ; 122023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37530744

RESUMEN

Posttranslational modifications of epigenetic modifiers provide a flexible and timely mechanism for rapid adaptations to the dynamic environment of cancer cells. SIRT1 is an NAD+-dependent epigenetic modifier whose activity is classically associated with healthy aging and longevity, but its function in cancer is not well understood. Here, we reveal that 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3, calcitriol), the active metabolite of vitamin D (VD), promotes SIRT1 activation through auto-deacetylation in human colon carcinoma cells, and identify lysine 610 as an essential driver of SIRT1 activity. Remarkably, our data show that the post-translational control of SIRT1 activity mediates the antiproliferative action of 1,25(OH)2D3. This effect is reproduced by the SIRT1 activator SRT1720, suggesting that SIRT1 activators may offer new therapeutic possibilities for colon cancer patients who are VD deficient or unresponsive. Moreover, this might be extrapolated to inflammation and other VD deficiency-associated and highly prevalent diseases in which SIRT1 plays a prominent role.


Asunto(s)
Neoplasias del Colon , Receptores de Calcitriol , Humanos , Receptores de Calcitriol/metabolismo , Sirtuina 1/metabolismo , Calcitriol , Vitaminas
3.
Front Toxicol ; 5: 1189303, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37265663

RESUMEN

Current test strategies to identify thyroid hormone (TH) system disruptors are inadequate for conducting robust chemical risk assessment required for regulation. The tests rely heavily on histopathological changes in rodent thyroid glands or measuring changes in systemic TH levels, but they lack specific new approach methodologies (NAMs) that can adequately detect TH-mediated effects. Such alternative test methods are needed to infer a causal relationship between molecular initiating events and adverse outcomes such as perturbed brain development. Although some NAMs that are relevant for TH system disruption are available-and are currently in the process of regulatory validation-there is still a need to develop more extensive alternative test batteries to cover the range of potential key events along the causal pathway between initial chemical disruption and adverse outcomes in humans. This project, funded under the Partnership for the Assessment of Risk from Chemicals (PARC) initiative, aims to facilitate the development of NAMs that are specific for TH system disruption by characterizing in vivo mechanisms of action that can be targeted by in embryo/in vitro/in silico/in chemico testing strategies. We will develop and improve human-relevant in vitro test systems to capture effects on important areas of the TH system. Furthermore, we will elaborate on important species differences in TH system disruption by incorporating non-mammalian vertebrate test species alongside classical laboratory rat species and human-derived in vitro assays.

4.
Sci Total Environ ; 874: 162406, 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-36841402

RESUMEN

Nanoplastics (NP) are present in aquatic and terrestrial ecosystems. Humans can be exposed to them through contaminated water, food, air, or personal care products. Mechanisms of NP toxicity are largely unknown and the Zebrafish embryo poses an ideal model to investigate them due to its high homology with humans. Our objective in the present study was to combine a battery of behavioral assays with the study of endocrine related gene expression, to further explore potential NP neurotoxic effects on animal behavior. Polystyrene nanoplastics (PSNP) were used to evaluate NP toxicity. Our neurobehavioral profiles include a tail coiling assay, a light/dark activity assay, two thigmotaxis anxiety assays (auditory and visual stimuli), and a startle response - habituation assay in response to auditory stimuli. Results show PSNP accumulated in eyes, neuromasts, brain, and digestive system organs. PSNP inhibited acetylcholinesterase and altered endocrine-related gene expression profiles both in the thyroid and glucocorticoid axes. At the whole organism level, we observed altered behaviors such as increased activity and anxiety at lower doses and lethargy at a higher dose, which could be due to a variety of complex mechanisms ranging from sensory organ and central nervous system effects to others such as hormonal imbalances. In addition, we present a hypothetical adverse outcome pathway related to these effects. In conclusion, this study provides new understanding into NP toxic effects on zebrafish embryo, emphasizing a critical role of endocrine disruption in observed neurotoxic behavioral effects, and improving our understanding of their potential health risks to human populations.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Animales , Humanos , Poliestirenos/toxicidad , Poliestirenos/metabolismo , Pez Cebra/metabolismo , Microplásticos/metabolismo , Ecosistema , Acetilcolinesterasa/metabolismo , Contaminantes Químicos del Agua/metabolismo , Nanopartículas/toxicidad , Embrión no Mamífero
5.
Thyroid ; 32(10): 1259-1270, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35833460

RESUMEN

Background: The sodium/iodide symporter (NIS) is a transmembrane protein located on the basolateral membrane of thyrocytes. Despite its physiological and clinical relevance, little is known about the mechanisms that mediate NIS subcellular sorting. In the present study, we examined NIS basolateral trafficking in vitro using non-thyroid and thyroid epithelial cells. Methods: Immunofluorescence and Western blotting were performed to analyze NIS subcellular location and function in cells grown in monolayers under unpolarized and/or polarized conditions. Strategic NIS residues were mutated, and binding of NIS to clathrin adaptor complexes was determined by immunoprecipitation. Results: We show that NIS reaches the plasma membrane (PM) through a thyrotropin-dependent mechanism 24 hours after treatment with the hormone. We demonstrate that NIS basolateral trafficking is a clathrin-mediated mechanism, in which the clathrin adaptor complexes AP-1 (A and B) sort NIS from the trans-Golgi network (TGN) and recycling endosomes (REs). Specifically, we show that the AP-1B µ1 subunit controls NIS basolateral sorting through common REs. In its absence, NIS is apically missorted but remains functional. Additionally, direct NIS basolateral transport from the TGN to the basolateral membrane is mediated by AP-1A through clathrin-coated vesicles that also carry the transferrin receptor. Loss of the µ1 subunit of AP-1A is functionally compensated by AP-1B. Furthermore, loss of both subunits diminishes NIS trafficking to the PM. Finally, we demonstrate that AP-1A binds to the L121 and LL562/563 residues on NIS, whereas AP-1B binds to L583. Conclusions: Our findings highlight the novel involvement of the clathrin-coated machinery in basolateral NIS trafficking. Given that AP-1A expression is reduced in tumors, and its expression correlates with that of NIS, these findings will help uncover new targets in thyroid cancer treatment.


Asunto(s)
Yoduros , Simportadores , Humanos , Yoduros/metabolismo , Factor de Transcripción AP-1 , Clatrina/metabolismo , Receptores de Transferrina/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Tirotropina/metabolismo , Hormonas , Sodio
6.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35163605

RESUMEN

Due to their ease of isolation and their properties, mesenchymal stem cells (MSCs) have been widely investigated. MSCs have been proved capable of migration towards areas of inflammation, including tumors. Therefore, they have been suggested as vectors to carry therapies, specifically to neoplasias. As most of the individuals joining clinical trials that use MSCs for cancer and other pathologies are carefully recruited and do not suffer from other diseases, here we decided to study the safety and application of iv-injected MSCs in animals simultaneously induced with different inflammatory pathologies (diabetes, wound healing and tumors). We studied this by in vitro and in vivo approaches using different gene reporters (GFP, hNIS, and f-Luc) and non-invasive techniques (PET, BLI, or fluorescence). Our results found that MSCs reached different organs depending on the previously induced pathology. Moreover, we evaluated the property of MSCs to target tumors as vectors to deliver adenoviruses, including the interaction between tumor microenvironment and MSCs on their arrival. Mechanisms such as transdifferentiation, MSC fusion with cells, or paracrine processes after MSCs homing were studied, increasing the knowledge and safety of this new therapy for cancer.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Neoplasias , Microambiente Tumoral , Animales , Femenino , Xenoinjertos , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias/metabolismo , Neoplasias/terapia
7.
Front Endocrinol (Lausanne) ; 13: 1071775, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36714606

RESUMEN

Introduction: The dynamic risk stratification (DRS) is a relatively new system in thyroid cancer that considers the response to primary treatment to improve the initial risk of recurrence. We wanted to validate DRS system in a nationwide multicenter study and explore if the incorporation of BRAFV600E into DRS helps to better categorize and predict outcomes. Materials and methods: Retrospective study of 685 patients from seven centers between 1991 and 2016, with a mean age of 48 years and a median follow-up time of 45 months (range 23-77). The overall BRAFV600E prevalence was 53.4%. We classified patients into four categories based on DRS ('excellent', 'indeterminate', 'biochemical incomplete', and 'structural incomplete' response). Cox regression was used to calculate adjusted hazard ratios (AHR) and proportions of variance explained (PVEs). Results: We found 21.6% recurrences and 2.3% cancer-related deaths. The proportion of patients that developed recurrence in excellent, indeterminate, biochemical incomplete and structural incomplete response to therapy was 1.8%, 54%, 91.7% and 96.2% respectively. Considering the outcome at the end of the follow up, patients showed no evidence of disease (NED) in 98.2, 52, 33.3 and 25.6% respectively. Patients in the structural incomplete category were the only who died (17.7%). Because they have similar outcomes in terms of NED and survival, we integrated the indeterminate and biochemical incomplete response into one unique category creating the 3-tiered DRS system. The PVEs of the AJCC/TNM staging, ATA risk classification, 4-tiered DRS, and 3-tiered DRS to predict recurrence at five years were 21%, 25%, 57% and 59% respectively. BRAFV600E was significantly associated with biochemical incomplete response (71.1 vs 28.9%) (HR 2.43; 95% CI, 1.21 to 5.23; p=0.016), but not with structural incomplete response or distant metastases. BRAF status slightly changes the AHR values of the DRS categories but is not useful for different risk grouping. Conclusions: This is the first multicenter study to validate the 4-tiered DRS system. Our results also show that the 3-tiered DRS system, by integrating indeterminate and biochemical incomplete response into one unique category, may simplify response to therapy keeping the system accurate. BRAF status does not provide any additional benefit to DRS.


Asunto(s)
Proteínas Proto-Oncogénicas B-raf , Neoplasias de la Tiroides , Humanos , Persona de Mediana Edad , Proteínas Proto-Oncogénicas B-raf/genética , Estudios Retrospectivos , Tiroidectomía , Neoplasias de la Tiroides/diagnóstico , Neoplasias de la Tiroides/epidemiología , Neoplasias de la Tiroides/genética , Medición de Riesgo
8.
Sci Total Environ ; 797: 149125, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34346375

RESUMEN

Nanoplastics (NP) are an emerging threat to human health and there is a need to understand their toxicity. Zebrafish (ZF) is extensively used as a toxicology model due to its power to com-bine genetic, cellular, and whole organism endpoints. The present review integrates results regarding polystyrene NP effects on ZF embryo development. Study design was evaluated against NP effects. NP size, concentration, and exposure time did not affect organism responses (mortality, development, heart rate, locomotion) or cellular responses (gene expression, enzymes, metabolites). However, NP accumulation depended on size. Smaller NP can reach internal organs (brain, eyes, liver, pancreas, heart) but larger (>200 nm) accumulate mainly in gut, gills and skin. Locomotion and heart rate were commonly affected with hypoactivity and bradycardia being more prevalent. Effects on genetic/enzymatic/metabolic pathways were thoroughly analyzed. Immunity genes were generally upregulated whereas oxidative stress response genes varied. Central nervous system genes and visual related genes were generally downregulated. Results of genetic and enzymatic analyses coincided only for some genes/enzyme pairs. Reviewed studies provide a basis for understanding NP toxicity but results are hard to integrate. We propose key recommendations and future directions with regard to experimental design that may allow greater comparability across future studies.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Animales , Embrión no Mamífero , Humanos , Microplásticos , Poliestirenos , Pez Cebra
9.
Endocr Relat Cancer ; 28(10): T141-T165, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34387194

RESUMEN

The sodium/iodide symporter (NIS) is an intrinsic plasma membrane protein that mediates active iodide transport into the thyroid gland and into several extrathyroidal tissues. NIS-mediated iodide uptake plays a pivotal role in the biosynthesis of thyroid hormones, of which iodide is an essential constituent. For 80 years, radioiodide has been used for the diagnosis and treatment of thyroid cancer, a successful theranostic agent that is extending its use to extrathyroidal malignancies. The purpose of this review is to focus on the most recent findings regarding the mechanisms that regulate NIS both in thyroid and extra-thyroidal tissues. Among other issues, we discuss the different transcriptional regulatory elements that govern NIS transcription in different tissues, the epigenetic modifications that regulate its expression, and the role that miRNAs play in fine-tuning NIS after being transcribed. A review on how hormones, cytokines, and iodide itself regulate NIS is provided. We also review the present stage of understanding NIS dysregulation in cancer, occupied mainly by convergent signaling pathways and by new insights in the route that NIS follows through different subcellular compartments to the plasma membrane. Furthermore, we cover NIS distribution and function in the increasing number of extrathyroidal tissues that express the symporter, as well as the role that NIS plays in tumor progression independently of its transport activity.


Asunto(s)
MicroARNs , Simportadores , Neoplasias de la Tiroides , Humanos , Simportadores/genética , Simportadores/metabolismo , Neoplasias de la Tiroides/metabolismo
10.
Cancers (Basel) ; 13(5)2021 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33673669

RESUMEN

Thyroid radio-iodide therapy (RAI) is one of the oldest known and used targeted therapies. In thyroid cancer, it has been used for more than eight decades and is still being used to improve thyroid tumor treatment to eliminate remnants after thyroid surgery, and tumor metastases. Knowledge at the molecular level of the genes/proteins involved in the process has led to improvements in therapy, both from the point of view of when, how much, and how to use the therapy according to tumor type. The effectiveness of this therapy has spread into other types of targeted therapies, and this has made sodium/iodide symporter (NIS) one of the favorite theragnostic tools. Here we focus on describing the molecular mechanisms involved in radio-iodide therapy and how the alteration of these mechanisms in thyroid tumor progression affects the diagnosis and results of therapy in the clinic. We analyze basic questions when facing treatment, such as: (1) how the incorporation of radioiodine in normal, tumor, and metastatic thyroid cells occurs and how it is regulated; (2) the pros and cons of thyroid hormonal deprivation vs. recombinant human Thyroid Stimulating Hormone (rhTSH) in radioiodine residence time, treatment efficacy, thyroglobulin levels and organification, and its influence on diagnostic imaging tests and metastasis treatment; and (3) the effect of stunning and the possible causes. We discuss the possible incorporation of massive sequencing data into clinical practice, and we conclude with a socioeconomical and clinical vision of the above aspects.

11.
PLoS Biol ; 18(6): e3000732, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32603375

RESUMEN

Coordination of gene expression with nutrient availability supports proliferation and homeostasis and is shaped by protein acetylation. Yet how physiological/pathological signals link acetylation to specific gene expression programs and whether such responses are cell-type-specific is unclear. AMP-activated protein kinase (AMPK) is a key energy sensor, activated by glucose limitation to resolve nutrient supply-demand imbalances, critical for diabetes and cancer. Unexpectedly, we show here that, in gastrointestinal cancer cells, glucose activates AMPK to selectively induce EP300, but not CREB-binding protein (CBP). Consequently, EP300 is redirected away from nuclear receptors that promote differentiation towards ß-catenin, a driver of proliferation and colorectal tumorigenesis. Importantly, blocking glycogen synthesis permits reactive oxygen species (ROS) accumulation and AMPK activation in response to glucose in previously nonresponsive cells. Notably, glycogen content and activity of the ROS/AMPK/EP300/ß-catenin axis are opposite in healthy versus tumor sections. Glycogen content reduction from healthy to tumor tissue may explain AMPK switching from tumor suppressor to activator during tumor evolution.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Neoplasias Colorrectales/metabolismo , Proteína p300 Asociada a E1A/metabolismo , Glucosa/farmacología , Animales , Proteína de Unión a CREB/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/patología , Activación Enzimática/efectos de los fármacos , Glucógeno/metabolismo , Ratones Endogámicos C57BL , Unión Proteica/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , beta Catenina/metabolismo
12.
Endocrinol Diabetes Nutr (Engl Ed) ; 67(1): 61-69, 2020 Jan.
Artículo en Inglés, Español | MEDLINE | ID: mdl-30962160

RESUMEN

Although iodine nutrition in Spain has improved in recent years, the problem is not completely resolved. It is necessary that health institutions establish measures to ensure an adequate iodine nutrition of the population, especially among the highest risk groups (children and adolescents, women of childbearing age, pregnant women and nursing mothers). A low salt intake should be advised, but it should be iodized. It is also imperative that food control agencies establish effective control over adequate iodization of salt. Indicators on iodine nutrition should be included in future health surveys. The EUthyroid study and the Krakow Declaration on iodine nutrition provide an opportunity to set up a pan-European plan for the prevention of iodine deficiency that should be considered and used by health authorities.


Asunto(s)
Yodo/administración & dosificación , Yodo/deficiencia , Cloruro de Sodio Dietético/administración & dosificación , Adolescente , Factores de Edad , Animales , Niño , Preescolar , Europa (Continente) , Femenino , Humanos , Lactante , Recién Nacido , Lactancia , Leche/química , Embarazo , Ingesta Diaria Recomendada/legislación & jurisprudencia , España/epidemiología
13.
Endocr Relat Cancer ; 25(4): R225-R245, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29437784

RESUMEN

Iodide (I-) metabolism is crucial for the synthesis of thyroid hormones (THs) in the thyroid and the subsequent action of these hormones in the organism. I- is principally transported by the sodium iodide symporter (NIS) and by the anion exchanger PENDRIN, and recent studies have demonstrated the direct participation of new transporters including anoctamin 1 (ANO1), cystic fibrosis transmembrane conductance regulator (CFTR) and sodium multivitamin transporter (SMVT). Several of these transporters have been found expressed in various tissues, implicating them in I- recycling. New research supports the exciting idea that I- participates as a protective antioxidant and can be oxidized to hypoiodite, a potent oxidant involved in the host defense against microorganisms. This was possibly the original role of I- in biological systems, before the appearance of TH in evolution. I- per se participates in its own regulation, and new evidence indicates that it may be antineoplastic, anti-proliferative and cytotoxic in human cancer. Alterations in the expression of I- transporters are associated with tumor development in a cancer-type-dependent manner and, accordingly, NIS, CFTR and ANO1 have been proposed as tumor markers. Radioactive iodide has been the mainstay adjuvant treatment for thyroid cancer for the last seven decades by virtue of its active transport by NIS. The rapid advancement of techniques that detect radioisotopes, in particular I-, has made NIS a preferred target-specific theranostic agent.


Asunto(s)
Yoduros/metabolismo , Yodo/metabolismo , Neoplasias/metabolismo , Simportadores/metabolismo , Humanos
14.
Endocrinol Diabetes Nutr ; 64(2): 109-117, 2017 02.
Artículo en Inglés, Español | MEDLINE | ID: mdl-28440775

RESUMEN

The association between diabetes and cancer was hypothesized almost one century ago. Today, a vast number of epidemiological studies support that obese and diabetic populations are more likely to experience tissue-specific cancers, but the underlying molecular mechanisms remain unknown. Obesity, diabetes, and cancer share many hormonal, immune, and metabolic changes that may account for the relationship between diabetes and cancer. In addition, antidiabetic treatments may have an impact on the occurrence and course of some cancers. Moreover, some anticancer treatments may induce diabetes. These observations aroused a great controversy because of the ethical implications and the associated commercial interests. We report an epidemiological update from a mechanistic perspective that suggests the existence of many common and differential individual mechanisms linking obesity and type 1 and 2 diabetes mellitus to certain cancers. The challenge today is to identify the molecular links responsible for this association. Classification of cancers by their molecular signatures may facilitate future mechanistic and epidemiological studies.


Asunto(s)
Diabetes Mellitus/epidemiología , Neoplasias/etiología , Obesidad/epidemiología , Antineoplásicos/efectos adversos , Antineoplásicos/uso terapéutico , Glucemia , Causalidad , Transformación Celular Neoplásica , Comorbilidad , Susceptibilidad a Enfermedades , Metabolismo Energético , Hormonas/fisiología , Humanos , Hipoglucemiantes/efectos adversos , Hipoglucemiantes/uso terapéutico , Huésped Inmunocomprometido , Inflamación , Modelos Biológicos , Riesgo
15.
Br J Cancer ; 114(7): 716-22, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26908326

RESUMEN

Increasing evidence suggests a complex relationship between obesity, diabetes and cancer. Here we review the evidence for the association between obesity and diabetes and a wide range of cancer types. In many cases the evidence for a positive association is strong, but for other cancer types a more complex picture emerges with some site-specific cancers associated with obesity but not to diabetes, and some associated with type I but not type II diabetes. The evidence therefore suggests the existence of cumulative common and differential mechanisms influencing the relationship between these diseases. Importantly, we highlight the influence of antidiabetics on cancer and antineoplastic agents on diabetes and in particular that antineoplastic targeting of insulin/IGF-1 signalling induces hyperglycaemia that often evolves to overt diabetes. Overall, a coincidence of diabetes and cancer worsens outcome and increases mortality. Future epidemiology should consider dose and time of exposure to both disease and treatment, and should classify cancers by their molecular signatures. Well-controlled studies on the development of diabetes upon cancer treatment are necessary and should identify the underlying mechanisms responsible for these reciprocal interactions. Given the global epidemic of diabetes, preventing both cancer occurrence in diabetics and the onset of diabetes in cancer patients will translate into a substantial socioeconomic benefit.


Asunto(s)
Diabetes Mellitus Tipo 2/epidemiología , Hipoglucemiantes/farmacología , Neoplasias/epidemiología , Obesidad/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/etiología , Humanos , Neoplasias/etiología
16.
Antioxid Redox Signal ; 24(15): 855-66, 2016 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-26650895

RESUMEN

AIMS: The sodium-iodide symporter (NIS) mediates the uptake of I(-) by the thyroid follicular cell and is essential for thyroid hormone biosynthesis. Nis expression is stimulated by thyroid-stimulating hormone (TSH) and also requires paired box 8 (Pax8) to bind to its promoter. Pax8 binding activity depends on its redox state by a mechanism involving thioredoxin/thioredoxin reductase-1 (Txn/TxnRd1) reduction of apurinic/apyrimidinic endonuclease 1 (Ape1). In this study, we investigate the role of Se in Nis expression. RESULTS: Selenium increases TSH-induced Nis expression and activity in rat thyroid cells. The stimulatory effect of Se occurs at the transcriptional level and is only observed for Nis promoters containing a Pax8 binding site in the Nis upstream enhancer, suggesting that Pax8 is involved in this effect. In fact, Se increases Pax8 expression and its DNA-binding capacity, and in Pax8-silenced rat thyroid cells, Nis is not Se responsive. By inhibiting Ape1 and TxnRd1 functions, we found that both enzymes are crucial for TSH and TSH plus Se stimulation of Pax8 activity and mediate the Nis response to Se treatment. INNOVATION: We describe that Se increases Nis expression and activity. We demonstrate that this effect is dependent on the redox functions of Ape1 and Txn/TxnRd1 through control of the DNA binding activity of Pax8. CONCLUSION: Nis expression is controlled by Txn/Ape1 through a TSH/Se-dependent mechanism. These findings open a new field of study regarding the regulation of Nis activity in thyroid cells. Antioxid. Redox Signal. 24, 855-866.


Asunto(s)
ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Factor de Transcripción PAX8/metabolismo , Selenio/fisiología , Simportadores/genética , Tiorredoxinas/fisiología , Tirotropina/fisiología , Animales , Línea Celular , Glutatión Peroxidasa/metabolismo , Oxidación-Reducción , Unión Proteica , Ratas , Simportadores/metabolismo , Tiorredoxina Reductasa 1/metabolismo , Transcripción Genética , Activación Transcripcional , Glutatión Peroxidasa GPX1
17.
Biochim Biophys Acta ; 1839(11): 1141-50, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25091498

RESUMEN

Minutes after ingestion of fat or carbohydrates, vesicles stored in enteroendocrine cells release their content of incretin peptide hormones that, together with absorbed glucose, enhance insulin secretion by beta-pancreatic cells. Freshly-made incretins must therefore be packed into new vesicles in anticipation of the next meal with cells adjusting new incretin production to be proportional to the level of previous insulin release and absorbed blood glucose. Here we show that insulin stimulates the expression of the major human incretin, glucose-dependent insulinotropic peptide (GIP) in enteroendocrine cells but requires glucose to do it. Akt-dependent release of FoxO1 and glucose-dependent binding of LEF1/ß-catenin mediate induction of Gip expression while insulin-induced phosphorylation of ß-catenin does not alter its localization or transcriptional activity in enteroendocrine cells. Our results reveal a glucose-regulated feedback loop at the entero-insular axis, where glucose levels determine basal and insulin-induced Gip expression; GIP stimulation of insulin release, physiologically ensures a fine control of glucose homeostasis. How enteroendocrine cells adjust incretin production to replace incretin stores for future use is a key issue because GIP malfunction is linked to all forms of diabetes.


Asunto(s)
Factores de Transcripción Forkhead/genética , Polipéptido Inhibidor Gástrico/genética , Glucosa/farmacología , Insulina/farmacología , Factor de Unión 1 al Potenciador Linfoide/genética , beta Catenina/genética , Células Cultivadas , Células Enteroendocrinas/efectos de los fármacos , Células Enteroendocrinas/metabolismo , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/metabolismo , Polipéptido Inhibidor Gástrico/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , beta Catenina/metabolismo
18.
J Clin Endocrinol Metab ; 99(7): E1199-208, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24708099

RESUMEN

CONTEXT: The sodium iodide symporter (NIS) mediates active transport of iodide into the thyroid and the lactating mammary glands and is highly expressed in thyroid and breast carcinomas. NIS is clinically very relevant because it allows the treatment with radioiodine of thyroid cancer patients. OBJECTIVE: In this study we wanted to explore whether NIS is expressed in the ovary and in ovarian cancer. METHODS/PATIENTS: Methods included NIS and paired box 8 expression and function in ovarian cancer patients and rats by immunochemistry, immunoblot, RT-PCR, and iodide uptake. RESULTS: Here we demonstrate for the first time that NIS is expressed in the ovary and fallopian tube and actively accumulates significant levels of radioiodide in vivo. In a large survey of menstruating women receiving radioiodide for medical purposes, 15% showed significant uptake in the normal reproductive tract. Ovarian NIS activity is influenced by the estrous cycle stage in rats, being up-regulated during peak levels of estrogens occurring immediately before the ovulation. We unveil that the regulatory mechanism underlying this phenomenon is based on the functional cooperation of estrogen receptor-α and paired box 8. We also show that NIS is highly expressed in ovarian cancer, predicting a poor prognosis in these patients. CONCLUSIONS: These results provide the basis that will help minimize the impact of therapeutic doses of radioiodide on gonadal function. We also suggest that NIS is a new ovarian cancer marker, opening a door for the use of radioiodide in the diagnosis and treatment of ovarian cancer patients.


Asunto(s)
Genitales Femeninos/metabolismo , Yodo/metabolismo , Neoplasias Glandulares y Epiteliales/diagnóstico , Neoplasias Ováricas/diagnóstico , Simportadores/fisiología , Adulto , Animales , Carcinoma Epitelial de Ovario , Femenino , Genitales Femeninos/patología , Células HeLa , Humanos , Persona de Mediana Edad , Neoplasias Glandulares y Epiteliales/genética , Neoplasias Glandulares y Epiteliales/metabolismo , Neoplasias Glandulares y Epiteliales/patología , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Pronóstico , Ratas , Ratas Wistar
19.
J Mol Endocrinol ; 52(1): R51-66, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24049067

RESUMEN

Extensive epidemiological studies suggest that the diabetic population is at higher risk of site-specific cancers. The diabetes-cancer link has been hypothesized to rely on various hormonal (insulin, IGF1, adipokines), immunological (inflammation), or metabolic (hyperglycemia) characteristics of the disease and even on certain treatments. Inflammation may have an important but incompletely understood role. As a growth factor, insulin directly, or indirectly through IGF1, has been considered the major link between diabetes and cancer, while high glucose has been considered as a subordinate cause. Here we discuss the evidence that supports a role for insulin/IGF1 in general in cancer, and the mechanism by which hyperglycemia may enhance the appearance, growth and survival of diabetes-associated cancers. High glucose triggers several direct and indirect mechanisms that cooperate to promote cancer cell proliferation, migration, invasion and immunological escape. In particular, high glucose enhancement of WNT/ß-catenin signaling in cancer cells promotes proliferation, survival and senescence bypass, and represents a previously unrecognized direct mechanism linking diabetes-associated hyperglycemia to cancer. Increased glucose uptake is a hallmark of tumor cells and may ensure enhanced WNT signaling for continuous proliferation. Mechanistically, high glucose unbalances acetylation through increased p300 acetyl transferase and decreased sirtuin 1 deacetylase activity, leading to ß-catenin acetylation at lysine K354, a requirement for nuclear accumulation and transcriptional activation of WNT-target genes. The impact of high glucose on ß-catenin illustrates the remodeling of cancer-associated signaling pathways by metabolites. Metabolic remodeling of cancer-associated signaling will receive much research attention in the coming years. Future epidemiological studies may be guided and complemented by the identification of these metabolic interplays. Together, these studies should lead to the development of new preventive strategies for diabetes-associated cancers.


Asunto(s)
Complicaciones de la Diabetes/metabolismo , Neoplasias/etiología , Neoplasias/metabolismo , Acetilación , Animales , Glucemia , Complicaciones de la Diabetes/epidemiología , Glucosa/metabolismo , Humanos , Hiperglucemia/complicaciones , Hiperglucemia/metabolismo , Hiperinsulinismo/complicaciones , Hiperinsulinismo/metabolismo , Neoplasias/epidemiología , Riesgo , Transducción de Señal , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
20.
Mol Cell ; 49(3): 474-86, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23273980

RESUMEN

Nuclear accumulation of ß-catenin, a widely recognized marker of poor cancer prognosis, drives cancer cell proliferation and senescence bypass and regulates incretins, critical regulators of fat and glucose metabolism. Diabetes, characterized by elevated blood glucose levels, is associated with increased cancer risk, partly because of increased insulin growth factor 1 signaling, but whether elevated glucose directly impacts cancer-associated signal-transduction pathways is unknown. Here, we show that high glucose is essential for nuclear localization of ß-catenin in response to Wnt signaling. Glucose-dependent ß-catenin nuclear retention requires lysine 354 and is mediated by alteration of the balance between p300 and sirtuins that trigger ß-catenin acetylation. Consequently ß-catenin accumulates in the nucleus and activates target promoters under combined glucose and Wnt stimulation, but not with either stimulus alone. Our results reveal a mechanism by which high glucose enhances signaling through the cancer-associated Wnt/ß-catenin pathway and may explain the increased frequency of cancer associated with obesity and diabetes.


Asunto(s)
Glucosa/farmacología , Neoplasias/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , beta Catenina/metabolismo , Acetilación/efectos de los fármacos , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Cromatina/metabolismo , Citosol/efectos de los fármacos , Citosol/metabolismo , Proteína p300 Asociada a E1A/metabolismo , Polipéptido Inhibidor Gástrico/genética , Polipéptido Inhibidor Gástrico/metabolismo , Humanos , Cloruro de Litio/farmacología , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Neoplasias/patología , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Sirtuinas/metabolismo , Factores de Transcripción TCF/metabolismo , Transcripción Genética/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/genética , Proteína Wnt3A/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...